MiR-410 Is Overexpressed in Liver and Colorectal Tumors and Enhances Tumor Cell Growth by Silencing FHL1 via a Direct/Indirect Mechanism

نویسندگان

  • Yu Wang
  • Jie Fu
  • Mengmeng Jiang
  • Xiaoai Zhang
  • Long Cheng
  • Xiaojie Xu
  • Zhongyi Fan
  • Jing Zhang
  • Qinong Ye
  • Haifeng Song
  • Jin Q. Cheng
چکیده

FHL1 is an important tumor-suppressor that is downregulated in multiple tumors by unknown mechanisms. We demonstrated that miR-410 specifically targets the 3'UTR of FHL1. Furthermore, using DNA bisulfite modification and sequencing experiments, we demonstrated that the FHL1 promoter is hypermethylated in cancer cells. FHL1 methylation is increased upon miR-410 expression, suggesting that the regulation of FHL1 by miR-410 occurs by a dual mechanism. Using chromatin immunoprecipitation assays, we observed that miR-410 overexpression results in the increased binding of DNMT3A at the FHL1 promoter, which could explain how miR-410 regulates FHL1 methylation. Importantly, in vitro and in vivo results suggest that miR-410 may have oncogenic properties. Furthermore, both miR-410 and DNMT3A are upregulated in clinical human liver and colorectal tumors cancers. Our results suggest that miR-410 may function as an oncomiR and are consistent with its key function in regulating FHL1 in certain digestive system cancers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MiR-6165 Dysregulation in Breast Cancer and Its Effect on Cell Proliferation and Migration

Background: ncRNAs have been identified as oncogenic drivers and tumor suppressors in any type of cancer. Although many classes of ncRNAs have been reported, most studies have been performed on microRNAs (miRNAs). miRNAs can regulate several target genes and affect important processes such as homeostasis, angiogenesis, cell proliferation, differentiation, and apoptosis. Located in the p75NTR ge...

متن کامل

miR-506 inhibits cell proliferation and invasion by targeting TET family in colorectal cancer

Objective(s): Ten-eleven translocation (TET) family members have been shown to be involved in the development of many tumors. However, the biological role of the TET family and its mechanism of action in colorectal carcinogenesis and progression remain poorly understood. Materials and Methods:We measured the expression levels of TET family members in colorectal cancer (CRC) specimens, in the c...

متن کامل

MiR-125b inhibits stromal cell proliferation in giant cell tumor of bone by targeting parathyroid hormone 1 receptor

Objective(s):miR-125b has been identified as a tumor suppressor in many tumors, but its role in giant cell tumor (GCT) of bone remains poorly understood. The current study aimed to investigate the potential role and mechanism of miR-125b in GCT. Materials and Methods:Expression levels of miR-125b in GCT tissues were determined using RT-PCR. The cell proliferation was surveyed by direct cell coun...

متن کامل

Expression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines

Background: Activation of the ubiquitin-proteasome pathway in various malignancies, including colorectal cancer, is established. This pathway mediates the degradation of damaged proteins and regulates growth and stress response. The novel human gene, UBE2Q2, with a putative ubiquitin-conjugating enzyme activity, is reported to be overexpressed in some malignancies. We sought to investigate the ...

متن کامل

miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer.

MicroRNAs (miRNAs) are a conserved class of small non-coding RNAs that play important roles in diverse biological processes, including chemoresistance. However, the molecular mechanism as to how miR-203 modulates the chemosensitivity to 5-fluorouracil (5-FU) in colorectal cancer is poorly known. In the present study, we found that miR-203 was downregulated in the 5-FU-resistant cell line LoVo/5...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014